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The core of the egg (“e-graphs good”) project is a library providing a flexible and performant
implementation of the equality graph (e-graph) data structure, providing a re-usable basis for
leveraging equality saturation in program optimisers to address the phase-ordering problem of
compilers. This mini-project explores the performance characteristics of the egg library through
benchmarking and profiling techniques, and uses this information to guide the design and assess
the suitability of data parallelism for its applications. We conclude that Rust’s rich support for
multithreading allows data parallelism to be leveraged in egg, but many portions of the algo-
rithm rely on shared mutable state, so the approach can only provide incremental performance
gains as a corollary of Amdahl’s law.
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1 Introduction
Optimising compilers have formed a key aspect of developing performant programs since the first
FORTRAN compiler in 1954, which aimed to compete with average hand-coded assembly and ded-
icated 25% of its instructions to optimisations [1]. Since then, significant research and engineering
effort has been exerted to build better optimising compilers, with notable examples including GCC
[2] and the LLVM project [3], leveraging increasingly numerous and exotic optimisations to meet
ever-increasing performance goals.

1.1 Phase ordering problem

The phase-ordering problem is a classical issue in compiler design, discussed as early as 1988 [4],
referring to selecting the optimal order with which to apply optimisations such as term rewrites.
Since the choice of earlier optimisations can hide or reveal later ones, this ordering can significantly
impact the generated code and its performance characteristics [5].

A naïve approach to this issue entails applying all orderings of term rewrites and selecting the best
by a cost metric. Unfortunately, this approach is exponential both space and time in the number of
rewriting rules [6], which taken in combination with modern compilers using many substitutions
(for example LLVM’s documentation lists 53 transformation passes alone [7]) makes it intractable
for real-world use. In addition to this, some substitutions such as x → x+0 are unbounded in their
expansion, meaning the set of all orderings cannot be enumerated. As such, a more sophisticated
approach is needed.

1.2 Equality graphs

The egg paper begins by introducing the equality graph (henceforth e-graph) data structure, which
underpins their approach. E-graphs were first discussed in Nelson Gregory’s PhD thesis in 1980 [8],
and have later been defined in the literature by Joshi et al. as “a conventional term DAG augmented
with an equivalence relation on the nodes of the DAG; two nodes are equivalent if the terms they
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represent are identical in value” [9], who also note that an e-graph of sizeO(n) can representΘ(2n)
distinct rewrites – mitigating the exponential complexities discussed in §1.1.

Figure 1: An e-graph compactly representing programs equivalent to (a×2)/2, from both
the egg GitHub documentation [10] and the egg paper [6, Fig. 2]

The egg paper instead defines e-graphs more concretely in a way tied to their performant implemen-
tation, extending Galler and Fisher’s seminal union-find data structure [11]. The disjoint sets of the
structure (e-classes) represent equivalence classes of expressions (e-nodes), which are represented
as functions whose arguments are other e-classes. An example of this is shown in Figure 1, con-
structing an e-graph left-to-right by applying term rewrites. In addition to this, the implementation
maintains two invariants: congruence closure, meaning that if two expressions are equivalent, their
sub-expressions are also equivalent; and Hashcons, maintaining canonical values in an internal data
structure.

1.3 Equality saturation

Equality saturation is a novel approach to structuring the optimisation phase of a compiler, pro-
posed by Tate et al. in 2009 [12]. It leverages the e-graph data structure to encode many equivalent
expressions of a term under a set of optimisation rules, then extract the most optimal term from
the e-graph according to a cost model, following the workflow shown in Figure 2. As opposed to
naïve term rewriting where a poor early choice of optimisation ordering may destructively hide
further optimisations, forming the crux of the phase ordering problem, equality saturation’s con-
structive approach does not clobber later optimisations, resulting in more desirable time and space
complexity characteristics. Despite the effectiveness of equality saturation, its widespread adoption
was hindered by the combination of its complexity and the absence of a reference implementation
which could be re-used.

Initialise
Input
term Extract

E-graph Optimised
term

Apply rewrites

1 def equality_saturation(expr, rewrites):
2 egraph = initial_egraph(expr)
3 while not egraph.is_saturated_or_timeout():
4 for rw in rewrites:
5 for (subst, eclass) in

egraph.ematch(rw.lhs):↪→

6 eclass2 = egraph.add(rw.rhs.subst(subst))
7 egraph.merge(eclass, eclass2)
8 return egraph.extract_best()

Figure 2: Box diagram and pseudocode for the equality saturation approach to term opti-
misation, derived from [6, Fig. 3].
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1.4 egg project
The egg project is significant in its research domain as it moved forward both the abstract and
concrete capabilities of the equality saturation technique.

For the abstract capabilities, the paper’s contributions include a novel optimisation to the way the
e-graph invariants are maintained. In traditional approaches, reading and writing to the e-graph is
interleaved for each rewrite, meaning the invariants must be maintained after each write. Instead,
egg groups these phases for each rewrite separately, meaning the expensive invariant maintenance
need only be performed once at the end of each iteration, rather than for every rewrite – shown in
Listing 3.

1 def equality_saturation(expr, rewrites):
2 egraph = initial_egraph(expr)
3 while not egraph.is_saturated_or_timeout():
4 # Reading and writing is mixed
5 for rw in rewrites:
6 for (subst, eclass) in

egraph.ematch(rw.lhs):↪→

7 # In traditional equality saturation,
8 # matches can be applied right away
9 # because invariants are always kept
10 eclass2 = egraph.add(

rw.rhs.subst(subst))↪→

11 egraph.merge(eclass, eclass2)
12 # Restore the invariants at each merge
13 egraph.rebuild()
14 return egraph.extract_best()

(a) Traditional approach.

1 def equality_saturation(expr, rewrites):
2 egraph = initial_egraph(expr)
3 while not egraph.is_saturated_or_timeout():
4 matches = []
5 # Read-only phase, invariants are preserved
6 for rw in rewrites:
7 for (subst, eclass) in

egraph.ematch(rw.lhs):↪→

8 matches.append((rw, subst, eclass))
9 # Write-only phase, temporarily break

invariants↪→

10 for (rw, subst, eclass) in matches:
11 eclass2 = egraph.add(rw.rhs.subst(subst))
12 egraph.merge(eclass, eclass2)
13 # Restore the invariants once per iteration
14 egraph.rebuild()
15

16 return egraph.extract_best()

(b) egg approach.

Figure 3: Comparison of the original and modified algorithms, demonstrating egg’s novel
“phase-separation” contribution, derived from [6, Fig. 5].

For the concrete capabilities, the open-source librarymitigated a key problemprecluding thewidespread
adoption of e-graph approaches, the complex and involved process of developing a custom e-graph
implementation for each use case. For example, one of the few existing use cases of e-graphs, the
Herbie floating point accuracy optimiser [13], initially implemented its own e-graph in Racket, but
later switched to using egg, resulting in a performance uplift and identification of bugs.

Due both to the improved viability and reduced barrier to entry facilitated by egg, there has since
been increased interest in leveraging e-graphs for a wide variety of use cases [14]. In combination,
these contributions significantly increased the prominence of the research domain, with this impact
being confirmed by the publication winning a “Distinguished Paper” award from its venue, POPL
2021.

1.5 Contributions

Despite the clear advantages of the equality saturation approach leveraged by egg over naïve enu-
meration, it is still limited in the scale of data it can process, by default limiting themaximumnumber
of e-nodes to 10, 000 [15] and execution time to reach saturation to 5 seconds [16]. This limitation
motivates an exploration of how the performance of egg’s implementation can be improved, in or-
der for it to process larger scales of data and hence be more viable for real-world workloads. As
such, this mini-project make the following three contributions:
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1. An extension of egg’s benchmarking suite, including performance profiling, to empirically
justify optimisations, discussed in §2 and §3.

2. An exploration of opportunities for data parallelism in egg to augment its performance on
multicore systems, discussed in §4.

3. An evaluation of the performance characteristics of data parallelism in egg, discussed in §5.

2 Benchmarking
egg provides minimal but fine-grained benchmarks, albeit only for two workloads. As such, the first
extension we make to the project is porting the existing tests into benchmarks in the criterion
testing framework [17], with an example shown in §A.1. This addresses the issues with the existing
suite, providing a much more varied and representative set of workloads, and leverages the benefits
of frameworks such as cachewarmups and statistical analysis across many experimental runs. Using
these new benchmarks, we can then better quantify and profile the performance characteristics of
egg, informing later optimisations.

2.1 Build configuration optimisation

In many performance optimisation efforts, there are low-hanging fruit which can be easily mod-
ified with little consequence for non-negligible improvements. The most salient example in the
egg codebase is modifications to the build configuration of the Rust compiler, shown in Listing 1.
These modifications provide more information for better optimisation at compile time, albeit with
a tradeoff for build times discussed in appendix §B.2. Whilst there are further opportunities for
optimisation, the focus of this project is on data parallelism, so these are not explored for brevity.

1 [profile.release]
2 codegen-units = 1
3 lto = "fat"
4 panic = "abort"

Listing 1: Modifications to the build configuration in the egg Cargo.toml file.

2.2 Benchmarking evaluation

The benefits of the new benchmarks are demonstrated by measuring the impact of the build con-
figuration changes across both suites. The existing benchmarks required manual re-runs and data
processing shown in §B.1 to aggregate statistically significant results, with the math benchmeasured
as having a 4.3% performance increase, albeit with significant variance. In contrast, the benefits of
our new criterion benchmarks come into clear focus when running a similar experiment with only
a single command, with Figure 4 showing the automatically generated experimental results. From
these results, we can see that the modified build configuration (blue) is non-negligibly faster than
the original build configuration (red), with a measured performance uplift of 8.1%.
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Figure 4: Experimental results for running egg’s math_ematching_bench under our new
criterion benchmark harness.

3 Performance profiling
Performance profiling extends beyond benchmarking, answering not only the question of what are
the performance characteristics of a program, but also why does it have those characteristics. Often,
this entails identifying the “worst offending” sections of a program which dominate its execution
time. We leverage samply [18], a statistical profiler to instrument program runs, and visualise the
results in two ways: flamegraphs and stack charts.

3.1 Understanding program performance with flamegraphs

Flamegraphs were developed by Brendan Gregg in 2011 to quickly identify the most frequent code
paths during performance analysis [19]. They hierarchically aggregate the time spent in a program’s
call stack irrespective of temporal ordering, making those code paths most visually prominent. Fig-
ure 5 shows the flamegraph of an egg benchmark, which can then be used for identifying and char-
acterising the performance of opportunities for data parallelism, discussed in §4.

Figure 5: Flamegraph of the diff_power_harder benchmark, visualised with cargo
flamegraph [19], full page version in §13.

5



3.2 Visualising phase separation with stack charts

In contrast to flamegraphs, stack charts visualise a program’s call stack whilst preserving temporal
ordering, making themmore suitable for understanding program behaviour. Using this visualisation
of profiling data, we can characterise egg’s novel contribution of phase separation, as shown in
Figure 6, which further empirically supports our understanding of performance characteristics.

(a) Profile trace with first phase, search_rewrites, highlighted.

(b) Profile trace with second phase,
apply_rewrite, highlighted.

(c) Profile trace with third phase, rebuild, high-
lighted.

Figure 6: Profile traces for a single iteration of egg’s equality saturation, empirically mea-
suring the novel phase separation approach sketched in Listing 3 and visualised with the
Firefox profiler [20].

4 Opportunities for data parallelism
For many years, Dennard scaling yielded predictable year-on-year improvements to single-core ex-
ecution [21], as clock frequencies could be increased without proportionally increasing power con-
sumption as transistor sizes shrank. The breakdown of Dennard scaling from 2005 resulted in a
stagnation in single-core execution performance, and consequently the exploration of multi-core
processors to meet performance goals [22]. To leverage this new architectural trend, programs had
to be designed to use components which could run in parallel.

One of Rust’s key benefits is its support for “Fearless Concurrency” [23], with its borrow checker
validating both memory and thread safety through the same ownership mechanism. Leveraging this
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benefit, the rayon crate [24] provides a simple abstraction for data parallelism over Rust’s iterator
construct, allowing concurrent processing of data sequences, whilst prohibiting data races through
compile-time checking. An example of this is shown for the dot product kernel in Listing 7.

1 pub fn dot_product(
2 lhs: &[f64], rhs: &[f64]
3 ) -> f64 {
4 lhs.iter()
5 .zip(rhs.iter())
6 .map(|(x, y)| x * y)
7 .sum()
8 }

(a) Iterator implementation.

1 use rayon::prelude::*;
2

3 pub fn dot_product(
4 lhs: &[f64], rhs: &[f64]
5 ) -> f64 {
6 lhs.par_iter()
7 .zip(rhs.par_iter())
8 .map(|(x, y)| x * y)
9 .sum()
10 }

(b) rayon implementation.

Figure 7: Serial and parallel implementations of a dot product kernel in Rust, showing the
simplicity of rayon’s abstraction – merely changing .iter() to .par_iter().

To identify which components are most profitable to parallelise, we examine the profiler flame-
graph shown in Figure 5. Of the components which can be parallelised, the one which constitutes
the largest proportion of program runtime should be selected, as a corollary of Amdahl’s law [25].
Taking this approach, we can see that the egg::Run::RewriteSchedule::search_rewrites func-
tion in Figure 5 constitutes 36.6% of profiler samples and hence is the best candidate for paralleli-
sation. This matches the unexplored opportunities for parallelism suggested by the paper, which
states “searching for rewrite matches, which is the bulk of running time, can be parallelized thanks
to the phase separation” [6, p. 23:20].

The egg project is structured to maximise reusability by allowing custom implementations of many
components, including the algorithm for searching rewrites, by the developer of the dependent ap-
plication. As such, to best represent such use cases, we provide an egg::Run::RewriteSchedule
implementation for data parallelism over the identified component, show in Listing 2. This defines
the mechanism by which the e-graph is searched for possible rewrites during equality saturation,
one of the bottlenecks identified by profiling.

1 use rayon::prelude::*;
2

3 #[derive(Debug)]
4 pub struct ParallelIteratorScheduler;
5

6 impl<L, N> RewriteScheduler<L, N> for ParallelIteratorScheduler
7 where
8 L: Language + Sync + Send,
9 L::Discriminant: Sync + Send,
10 N: Analysis<L> + Sync + Send,
11 N::Data: Sync + Send
12 {
13 fn search_rewrites<'a>(
14 &mut self,
15 iteration: usize,
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16 egraph: &EGraph<L, N>,
17 rewrites: &[&'a Rewrite<L, N>],
18 limits: &RunnerLimits,
19 ) -> RunnerResult<Vec<Vec<SearchMatches<'a, L>>>> {
20 rewrites
21 .par_iter()
22 .map(|rw| {
23 let ms = rw.search(egraph);
24 limits.check_limits(iteration, egraph)?;
25 Ok(ms)
26 })
27 .collect()
28 }
29 }
30

Listing 2: Rust implementation of a parallel rewrite scheduler using rayon, directly usable
in egg dependent runners with .with_scheduler(ParallelIteratorScheduler).

Unfortunately, opportunities for data parallelism are constrained by task dependencies and shared
mutable state. In order to guarantee to the Rust compiler these conditions are met, we set the
Sync and Send traits on lines 8 – 11 of Listing 2. However, these are not valid for the default
egg::Run::BackoffScheduler implementation, as it relies heavily on shared mutable state to track
which rules to ban, so it cannot trivially be parallelised. Hence, we evaluate performance charac-
teristics of a simple iterator scheduler, which is then parallelised as shown above.

5 Evaluation
In order to characterise the performance of the implementation of data parallelism discussed in §4,
we modify our benchmark suite from §2 to allow direct comparison between serial and parallel
scheduled runners – the main functional loop of egg’s equality saturation implementation. For the
following plots, we discuss the diff_power_harder benchmark from the variety investigated for
its comparative complexity among tests to minimise the impact of setup and teardown, making it
better representative of real-world applications of equality saturation.

Figure 8, with individual plots in §D.1, directly compares the average runtime using criterion.
From this, we can see that the parallel implementation is ∼ 12% slower than the serial implementa-
tion.

diff_power_harder_comparison/serial

diff_power_harder_comparison/parallel

1.00 1.25 1.5 1.75 2

PDF

Average time (ms)

Figure 8: Comparison of the average runtimes of the serial and parallel implementations
of the diff_power_harder benchmark, generated using criterion.

This regression could be caused by a number of issues, from overhead spawning threads to longwaits
for locks on shared mutable state. As such, we again apply the performance profiling techniques
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discussed in §3, profiling the program run and visualising the data with the Flamegraphs shown in
Figure 9.

(a)Main thread.

(b) Worker thread.

Figure 9: Flamegraphs of the parallel implementation of the diff_power_harder bench-
mark’s main and worker threads, visualised with the Firefox profiler [20].

In Figure 9a, the highlighted vertical block culminating in __psynch_wait shows where the egg:: ⌋

Run::RewriteSchedule::search_rewrites is dispatched to theworker threads, and Figure 9b shows
From this, we can see that the vast majority, 73%, of the worker thread time is spent waiting as
opposed to searching rewrites. Since Rayon uses a work-stealing scheduled thread model [24], if
the number of rewrites to search is fewer than the large default thread pool size, which may be
guaranteed for small rule sets, some threads may do no work whilst still incurring a scheduling
overhead. This can be mitigated by reducing the number of threads in the thread pool with the
RAYON_NUM_THREADS environment variable. Re-running the diff_power_harder tests shown in Fig-
ure 10 with 2 threads then shows a performance uplift of ∼ 10% by leveraging data parallelism.
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diff_power_harder_comparison/serial

diff_power_harder_comparison/parallel
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Figure 10: Comparison of the average runtimes of the serial and parallel implemen-
tation using only two threads of the diff_power_harder benchmark, generated using
criterion.

To characterise this behaviour, we measure the performance results sweeping through the size of
the thread pool in comparison to serial runs, shown in Figure 11. From this, we can see that data
parallelism provides performance uplifts for the diff_power_harder workload for between 2 and 6
threads, with larger thread pool sizes incurring an overhead which offsets any benefits derived from
parallelisation.
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Figure 11: Plot of the execution time of the diff_power_harder test across thread pool
sizes when run in parallel, and when run in serial.

5.1 Performance scaling

Finally, we explore the scaling properties of the parallel implementation, with the experiment shown
in Figure 12. We can see that as workloads scale the performance uplift from parallelism commen-
surately grows as the threading overhead is amortised over the longer runtimes. However, for this
the egg::Run::RewriteSchedule::search_rewrites represents a smaller proportion of the work,
so the parallel version is less beneficial than previous experiments at ∼ 4% performance uplift.
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Figure 12: Comparison of the scaling properties of the serial and parallel implementations,
over a parameterised version of the math_associate_adds test case shown in appendix
§A.2.

6 Future and related work
Following its initial success, the egg project has as remained an active research topic. In addition
to the rewrite of Herbie discussed in §1.4, it has underpinned a variety of developments in compiler
design, for example Yang et al.’s use application of equality saturation for tensor graph superop-
timisation [26]. In addition to this, two years after its publication, Zhang et al. proposed egglog
[27], which unifies egg’s equality saturation with Datalog [28], a declarative programming language
influenced by Prolog.

Whilst equality saturation provides an analytical approach to the tractability of the phase ordering
problem, recent trends in reinforcement learning have also been applied to the problem, with exam-
ples including LLVM’s POSET-RL [29] and Haj-Ali et al.’s AutoPhase [30] respectively, which both
achieved over 10% performance improvements for their workloads.

7 Conclusion
To conclude, we extended egg’s benchmarking suite, and used it in combination with performance
profiling techniques to implement and evaluate opportunities for data parallelism in egg. We found
that searching the e-graph for rewrites is the most suitable application of parallelism, and can yield
incremental performance improvements. However, these improvements are constrained by neces-
sarily serial components of equality saturation, as a corollary of Amdahl’s law.
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A Example criterion benchmarks

A.1 Simple benchmark

Benchmarks derived from all the test cases for the math, lambda, and simple rule sets were written
to ensure representation of real-world use cases. An example benchmark taken from the math suite
is shown in Listing 3.

1 use egg::{rewrite as rw, *};
2

3 mod definitions;
4 use definitions::math;
5

6 use criterion::{criterion_group, criterion_main, Criterion, BenchmarkId};
7

8 fn math_simplify_add() {
9 egg::test::test_runner(
10 "math_simplify_add",
11 None,
12 &math::rules(),
13 "(+ x (+ x (+ x x)))".parse().unwrap(),
14 &["(* 4 x)".parse().unwrap()],
15 None,
16 true
17 )
18 }
19

20 pub fn math_test_simplify_add(c: &mut Criterion) {
21 c.bench_function(
22 "math_simplify_add",
23 |b| b.iter(math_simplify_add)
24 );
25 }
26

27 criterion_group!(benches, math_test_simplify_add);
28 criterion_main!(benches);

Listing 3: Example benchmark drawn from the math test suite.

A.2 Parameterised benchmark

In addition to this, some benchmarks were modified to be parameterised in the size of their input
data to investigate scaling properties. One example of this is the math_associate_adds test, shown
in Listing 3.

1 use egg::*;
2

3 mod definitions;
4 use definitions::math;
5

6 use criterion::{criterion_group, criterion_main, Criterion, BenchmarkId};
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7

8 fn generate_ascending_rpn(n: usize) -> String {
9 if n == 0 {
10 return String::new();
11 }
12 if n == 1 {
13 return "1".to_string();
14 }
15 let mut result = format!("{}", n);
16 for i in (1..n).rev() {
17 result = format!("(+ {} {})", i, result);
18 }
19 result
20 }
21

22 fn generate_descending_rpn(n: usize) -> String {
23 if n == 0 {
24 return String::new();
25 }
26 if n == 1 {
27 return "1".to_string();
28 }
29 let mut result = "1".to_string();
30 for i in 2..=n {
31 result = format!("(+ {} {})", i, result);
32 }
33 result
34 }
35

36 fn math_associate_adds(n: usize) {
37 egg::test::test_runner(
38 "math_associate_adds",
39 Some(Runner::default()
40 .with_time_limit(std::time::Duration::from_secs(120))
41 .with_iter_limit(60)
42 .with_node_limit(50_000_000)),
43 &[
44 rw!("comm-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
45 rw!("assoc-add"; "(+ ?a (+ ?b ?c))" => "(+ (+ ?a ?b) ?c)"),
46 ],
47 generate_ascending_rpn(n).parse().unwrap(),
48 &[generate_descending_rpn(n).parse().unwrap()],
49 Some(|_: Runner<math::Math, ()>| ()),
50 true
51 )
52 }
53

54 pub fn math_scaling(c: &mut Criterion) {
55 let mut group = c.benchmark_group("math_scaling");
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56 group.sample_size(10); // Bound the number of samples to avoid overwhelming
profiler↪→

57 for i in 3..12 {
58 group.bench_with_input(BenchmarkId::new("math_associate_adds", i), &i,
59 |b, i| b.iter(|| math_associate_adds(*i)));
60 }
61 group.finish();
62 }
63

64 criterion_group!(benches, math_scaling);
65 criterion_main!(benches);

Listing 4: Example parameterised math_associate_adds number benchmark.

A.3 Fibonacci benchmark

Another example of a parameterised benchmark is the lambda_fib test, also shown in Listing 5.

1 use egg::*;
2

3 mod definitions;
4 use definitions::lambda;
5

6 use criterion::{criterion_group, criterion_main, Criterion, BenchmarkId};
7

8 fn fibonacci(n: u32) -> u32 {
9 if n <= 1 {
10 return n;
11 }
12 let mut a = 0;
13 let mut b = 1;
14 for _ in 2..=n {
15 let temp = a + b;
16 a = b;
17 b = temp;
18 }
19 b
20 }
21

22 fn lambda_fib(n: u32) {
23 egg::test::test_runner(
24 "lambda_fib",
25 Some(Runner::default()
26 .with_time_limit(std::time::Duration::from_secs(60))
27 .with_node_limit(25_000_000)
28 .with_iter_limit(60)),
29 &lambda::rules(),
30 format!("(let fib (fix fib (lam n
31 (if (= (var n) 0)
32 0
33 (if (= (var n) 1)
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34 1
35 (+ (app (var fib)
36 (+ (var n) -1))
37 (app (var fib)
38 (+ (var n) -2)))))))
39 (app (var fib) {n}))").parse().unwrap(),
40 &[fibonacci(n).to_string().parse().unwrap()],
41 None,
42 true
43 );
44 }
45

46 pub fn lambda_fib(c: &mut Criterion) {
47 let mut group = c.benchmark_group("lambda_test");
48 group.sample_size(10); // Bound the number of samples to avoid overwhelming

profiler↪→

49 for i in 2..6 {
50 group.bench_with_input(BenchmarkId::new("fib", i), &i,
51 |b, i| b.iter(|| lambda_fib(*i)));
52 }
53 group.finish();
54 }
55

56 criterion_group!(benches, lambda_fib);
57 criterion_main!(benches);

Listing 5: Example parameterised Fibonacci number benchmark.

When instrumented with the peak_alloc crate and evaluated with the parameter set to six, this
benchmark shown in Listing 5 yields the logs shown in Listing 6.

1 [snip]
2 [INFO egg::run] Current allocated memory: 1257.3353MB
3 [INFO egg::run] Current allocated memory: 1257.3206MB
4 [INFO egg::run] Current allocated memory: 1257.3057MB
5 [INFO egg::run] Apply time: 10.39106763
6 [INFO egg::run] Rebuild time: 5.21461168
7 [INFO egg::run] Size: n=8625732, e=35256
8 [INFO egg::run]
9 Iteration 16
10 [INFO egg::run] Search time: 8.539660830999999
11 [INFO egg::run] Current allocated memory: 17535.623MB
12 [INFO egg::run] Current allocated memory: 17535.576MB
13 [INFO egg::run] Current allocated memory: 17535.572MB
14 [INFO egg::run] Current allocated memory: 17502.984MB
15 ^Cmake: *** [bench] Interrupt: 2

Listing 6: Logs from evaluating fib(6).
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B Build configuration changes

B.1 Existing benchmark experimental results

Tomeasure the effect of the build configuration changes with the existing benchmark suite, we must
calculate the differences between the output CSVs generated before and after the runs, across five
re-runs for statistical confidence. This manually aggregated is shown below in Table 1.

Table 1: Comparison of the original and modified build configuration for the math tests
under egg’s original benchmark infrastructure.

Test name Avg default [s] Avg configured [s] Difference [%]
diff_power_harder 0.002738327 0.002623199 4.204318914
diff_power_simple 0.000345321 0.000326406 5.477512228
integ_one 0.000016351 0.000015018 8.152406581
integ_part1 0.000576379 0.000547154 5.070448438
integ_part2 0.002190299 0.002057403 6.067482111
integ_part3 0.000243557 0.00023004 5.549830225
integ_sin 0.000015725 0.000016792 -6.785373609
integ_x 0.000027 2.6267E-05 2.714814815
math_associate_adds 0.002685307 0.002411284 10.20453155
math_diff_different 0.000015559 0.000019977 -28.39514108
math_diff_ln 0.000017667 0.000015833 10.38093621
math_diff_same 1.8875E-05 0.000014351 23.96821192
math_diff_simple1 0.000236122 0.000220601 6.573296855
math_diff_simple2 0.000172896 0.000163921 5.190981862
math_powers 0.000024267 0.000025018 -3.09473771
math_simplify_add 0.000139948 0.00013663 2.370880613
math_simplify_const 0.000064576 0.000059435 7.961162042
math_simplify_factor 0.000544234 0.000492827 9.445753114
math_simplify_root 0.000793088 0.000733844 7.470041156

Positive percentage differences indicate that themodified version is faster, with math_diff_different
and math_diff_same being excluded as outliers due to machine noise. Experimental data is gener-
ated using the command provided in the documentation, shown in Listing 7 for both build configu-
rations, then compared with the percentage difference calculated as d−c

(d+c)÷2
× 100%.

1 EGG_BENCH_CSV=math.csv cargo test --test math --release -- --nocapture --test
--test-threads=1↪→

Listing 7: Command to generate the benchmark data.

B.2 Build configuration change compilation times

The compilation times can then be recorded using the hyperfine tool as shown in Listing 8, with
the results shown in Table 2.
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1 hyperfine --runs 10 "cargo clean && cargo build --profile release"
2 hyperfine --runs 5 "cargo clean && cargo test --release --no-run"

Listing 8: Command to generate the benchmark data building the library only and both
the library and the tests respectively.

Table 2: Comparison of the original and modified build configuration compilation times.

Build configuration Components built Average build time [s] Standard deviation [s]
Original Library 3.426 0.042
Modified Library 3.139 0.031
Original Library and tests 8.292 0.042
Modified Library and tests 16.582 1.377

From this table, we can see that modified build configuration has very little effect on building the
library only. However, building the library with all the tests doubles the build time. This is because
the tests define many rule sets, and include many macro expansions to set up test runners. Since
dependent applications are likely to invoke fewer macro expansions they are unlikely to experience
such a significant, and as applications are typically run many more times than they are compiled,
the performance trade-off is likely still worthwhile.
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C Full size flamegraph

Figure 13: Full size flamegraph of the diff_power_harder benchmark, visualised with
cargo flamegraph [19].



D Parallel implementation individual results

D.1 Results without thread pool size set
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Figure 14: Runtime distribution of the serial execution of the diff_power_harder bench-
mark, generated by criterion.
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Figure 15: Runtime distribution of the parallel execution of the diff_power_harder
benchmark, generated by criterion.
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D.2 Results with thread pool size set
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Figure 16: Runtime distribution of the serial execution of the diff_power_harder bench-
mark, generated by criterion. Note that this is correctly unchanged other than outliers
from Figure 14, as it results from running the same test.
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Figure 17: Runtime distribution of the parallel execution of the diff_power_harder
benchmark, with the thread pool size constained to two, generated by criterion.
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E Experiment hardware configuration
All experimental data was collected on an Apple M3 MacBook Air with 16GB of RAM. The output
of the lstopo tool is shown in Figure 18 to facilitate experimental reproducibility.
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Figure 18: Output of the lstopo tool on the experimental machine.
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